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Abstract. The structural and electronic properties of the recently synthesized ternary crystal Si2CN4 are
investigated by means of density functional calculations, in comparison with pure and C–defective β Si3N4.
The theoretical equilibrium lattice parameters of Si2CN4 well agree with experimental results, and the
optimized atomic positions refine those extracted from diffraction data, permitting a precise description of
the atomic structure. According to our calculations, the enthalpy of the reaction of dissociation of crystalline
Si2CN4 into silicon nitride, silicon carbide and molecular nitrogen is positive, suggesting that the novel
compound should be relatively stable at normal conditions, consistently with the experimental observation.
The analysis of CSi:β Si3N4, at low defect concentrations, either for scattered defect distributions or
neighboring CSi, reveals the presence of many dilated bonds. The microscopic stress is mainly responsible
for the lower stability of carbon defective silicon nitride with respect to Si2CN4.

PACS. 71.15.Nc Total energy and cohesive energy calculations – 81.05.Je Ceramics and refractories (in-
cluding borides, carbides, hydrides, nitrides, oxides, and silicides) – 61.72.Ji Point defects (vacancies,
interstitials, color centers, etc.) and defect clusters – 62.20.Dc Elasticity, elastic constants

1 Introduction

The search for new non–oxide ceramics has undergone a
rapid development in the last decade, due to the tech-
nological relevance of these compounds. They can have
remarkable mechanical properties, such as hardness and
plasticity, and improved resistance to high temperatures.
On one hand, progress has been made in the design of
binary CNx systems, aiming to obtain ultra–hard mate-
rials [1]. Stoichiometric crystalline carbonitride C3N4, al-
though theoretically predicted [2], has been experimen-
tally obtained as disordered or microcrystalline phases
[3–5] whose physical nature is still debated.

On the other hand, much work has been made to
synthesize new C–N based compounds through the in-
clusion of other chemical species, such as silicon, which
may favor the formation of tetrahedral bonding inside
the network, and improve the mechanical properties. Re-
cently, nanocrystalline SiC/Si3N4 composites with high
tenacity and plastic behavior have been synthesized [6].
Other groups [7] have studied Si–C–N based nanocom-
posites, formed by sintering of powders obtained through
laser pyrolysis of organic precursors. They found that an
enhanced resistance to recrystallization towards SiC and
Si3N4 can be obtained within a certain range of composi-
tion [8]. Further experimental investigations [8,9] showed
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that at temperatures lower than that needed to obtain re-
crystallization (' 1500 ◦C), these composites are formed
by nanocrystalline grains inside an amorphous matrix. In
all these phases, experimental evidence of Si–C, Si–N and
C–N bonding was found, their precise ratio depending on
temperature and macroscopic composition [10]. The X-ray
and neutron diffraction data obtained from these powders
were recently interpreted by means of a structural model
in which C substitutes either Si or N in the α or β phases
of silicon nitride [11]. Then, the discovery of crystalline
Si2CN4 [12,13] demonstrated that it is finally possible to
conceive ordered (meta)stable ternary systems, and there-
fore open new perspectives in the synthesis of Si–C–N
based ceramics.

In comparison with these experimental improvements,
theory has little advanced on the properties of ternary
Si–C–N compounds. Preliminary results of density func-
tional calculations are reported in reference [13], but they
are still scarce and focus essentially on the properties of
carbodiimide groups in various molecules and solids. Wang
and coworkers [14] studied the structural properties of the
β phase of hypothetical Si3−xCxN4 in search of superhard
materials, but nothing was said on the thermodynamical
stability and the electronic properties of these compounds.
Moreover, the success of the structural model for amor-
phous Si–N–C powders proposed in reference [11] calls for
a more fundamental description of carbon defects in the
silicon nitride network.
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In this paper, we present a theoretical investigation,
based on density functional theory, of the structural and
electronic properties of the crystalline compound Si2CN4

recently synthesized, and compare it with the inclusion
of substitutional C defects in the β phase of Si3N4 (i.e.
CSi:β–Si3N4). The paper is organised as follows: after a
detailed description of the computational ingredients, we
give an account of the atomic structures as obtained in our
simulations, in which both the internal (atomic positions)
and the external (volume, lattice parameters) degrees of
freedom are consistently optimized (only the type of the
cell is kept fixed). Our structural results for Si2CN4 well
compare to those obtained from X–ray diffraction [12].
Its bandstructure is discussed in relation with the nature
of the chemical bonds in the material, and compared to
molecular species and crystals showing the same kind of
bonding. The last section is devoted to the discussion of
the energetics: the thermodynamic stability of Si2CN4 is
compared to that of CSi:β–Si3N4 and other compounds.

2 Computational details

The electronic structure is described within the Density
Functional Theory (DFT), in the Local Density Approx-
imation (LDA), by using the Ceperley–Alder correlation
energy as parametrized by Perdew and Zunger [15]. When
calculating atoms or molecules in a polarized state, the
spin extension to LDA (LSDA) is used. The selfconsistent
electronic density is calculated through the scheme pro-
posed by Car and Parrinello [16]. Soft, norm–conserving
pseudopotentials are used to describe the interaction be-
tween the ionic core and the valence electrons [17]. The
Kohn–Sham orbitals are expanded in a plane–wave basis
set, up to a kinetic energy cutoff Ecut. Although a cutoff as
large as 60 Ry is necessary to get total energies converged
within few tens of meV when using our pseudopotentials,
we show in the following that a smaller Ecut = 40 Ry is
sufficient for most purposes. Plane waves are especially
efficient when studying defects and unknown structures,
since a single parameter (Ecut) determines the quality of
the basis set, which stays constant when changing struc-
tural parameters or the number and the type of the atoms
in the unit cell. Geometry optimization is therefore rather
simple to be carried out, and the energetics of compounds
showing different bonding properties can be computed eas-
ily. Extensive applications to bulk, surfaces and clusters
show the reliability of this method [18,19].

In order to assess the capability of our numerical ap-
proach to predict the structural properties and the en-
ergetics of Si–C–N based compounds, we perform sev-
eral tests on known molecules and crystals, and compare
our results to experimental data and other calculations.
Firstly, for N2, C2, SiC2 molecules and the CN radical,
we calculate interatomic distances, stretching frequencies
and dissociation energies. Most of the results are summa-
rized in Table 1. One can see that the computed inter-
atomic distances generally agree well with experimental
data, which is usually the case for LDA calculations [18].
For the stretching frequencies discrepancies up to 5% are

Table 1. Calculated and experimental interatomic distances
d, frequencies ω, and bond dissociation energy D of some di-
atomic molecules in their fundamental state (1Σ+

g for N2, 3Πu

for C2 and 2Σ+ for CN). The values are computed either by
using Ecut = 40 Ry (†) or Ecut = 60 Ry (‡). Other DFT results
obtained by Chong [24] are also shown for comparison.

N2 C2 CN·
Ref. [24] 1.095 1.166

this work † 1.109 1.30 1.177

d (Å) this work ‡ 1.101 1.31 1.175

exp. (Ref. [22]) 1.094 1.312 1.172

Ref. [24] 2396 2137

this work † 2230 1640 2060

ω (cm−1) this work ‡ 2210 1654 2035

exp. (Ref. [22]) 2360 1641 2069

Ref. [24] 11.38 9.33

this work † 10.52 7.48 9.07

D (eV) this work ‡ 10.59 7.51 9.09

exp. (Ref. [23]) 9.81 6.29 7.98

found, especially in the case of tightly bound molecules
like N2. This is a consequence of both the LDA and the
choice of the pseudopotential. The use of a harder pseu-
dopotential for nitrogen [20] would give frequencies closer
to experiments and bond energies overestimated by about
15% (deq = 1.109 Å, ω = 2325 cm−1, D = 11.20 eV).
As far as the use of LDA or LSDA is concerned, the
expected discrepancies for interatomic distances and fre-
quencies range from 0% to 2%, depending on the specific
system, and dissociation energies are generally overesti-
mated from 10% to 20% [18]. One can also see from Ta-
ble 1 that the use of either Ecut = 40 Ry or Ecut = 60 Ry
does not modify the results appreciably. Regarding the
SiC2 molecule, we check that our method well compares
to more refined quantum chemical calculations [21]. The
C2v configuration is found to be more stable of the C∞
one by 0.19 eV. The computed interatomic distances are:
1.25 Å (C–C, C2v), 1.27 Å (C–C, C∞), 1.83 Å (Si–C, C2v),
1.69 Å (Si–C, C∞). We also compute the frequencies of the
a1 stretching modes (1819 cm−1 and 886 cm−1), in good
agreement with previous calculations and experiments.

Then, we calculate structural properties (equilibrium
lattice parameters, bulk modulus B and cohesive energy
E(coh)) of O7

h Si, O7
h C, T 2

d SiC and the β phase of Si3N4.
For the latter, we use 2 special k points [25] in the ir-
reducible part of the Brillouin zone for the integration
of the charge density, and 10 special k points for Si, C,
and SiC. Such a choice is sufficient to get converged to-
tal energies within few tens of meV/atom. Special care is
used for β Si3N4, where both the internal (atomic coor-
dinates in the unit cell) and the external (a, c) structural
degrees of freedom have been optimized [26]. The total en-
ergy is calculated as a function of the latters by including
a corrections due to the finite size of the basis set [27].
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Table 2. Equilibrium lattice parameters a, c, bulk modulus B
and cohesive energy per unit cell Ecoh for the diamond phases
of Si and C, for the zincblende phase of SiC and for the β phase
(space group: P63/m) of Si3N4. Their unit cells contain 2, 2,
1, and 2 formula units, respectively. The theoretical values are
computed by using Ecut = 40 Ry. For β Si3N4, the structural
properties computed by using the supercell approach are given
in brackets, for the sake of comparison. The experimental data
are taken from reference [23], apart from the cohesive energy
of β Si3N4. It is obtained by adding the formation energies of
crystalline silicon and molecular nitrogen to the enthalpy of
formation of silicon nitride from the latters, as measured by
O’Hare and coworkers (Ref. [31]).

O7
h Si O7

h C T 2
d SiC β Si3N4

a (Å) theory 5.39 3.55 4.325 7.60 (7.55)

exp. 5.43 3.57 4.36 7.595

c (Å) theory 2.90 (2.93)

exp. 2.902

B (GPa) theory 95 449 221 241 (235)

exp. 99.2 443 230 256

Ecoh (eV) theory 10.74 17.52 14.75 97.0 (97.4)

exp. 9.32 14.84 12.72 84.18

The computed structural properties, summarized in Ta-
ble 2, well agree with experimental data.

For CSi:β Si3N4, we use orthorhombic supercells con-
taining 84 atoms, and sample the Brillouin zone with the
Γ point only. The size of our supercell is estimated to
be large enough to avoid spurious interactions between
the periodic images for the small defect concentrations
considered here, which correspond to either one or two C
atoms per unit cell. The bias introduced by this choice is
small, as it can be seen by comparing the structural prop-
erties of β Si3N4 computed within the supercell approach
with those obtained through the more accurate sampling
of the Brillouin zone (see Tab. 2). In order to reduce the
numerical errors, in the following we compare the physical
properties of C–defective silicon nitride with those of pure
β Si3N4, both calculated in the supercell approach.

For orthorhombic Si2CN4, a (2× 1× 2) supercell con-
taining 112 atoms is used, with Γ point sampling. The
total energy difference with respect to a calculation using
a special k point in the irreducible part of the Brillouin
Zone amounts to 0.08 eV/unit cell.

As far as the convergence with respect to the plane
wave cutoff is concerned, the use of either Ecut = 40 Ry or
Ecut = 60 Ry would modify the computed structural prop-
erties of 0.5% at most and it doesn’t practically affect the
atomic relaxations. We therefore adopt Ecut = 40 Ry from
now on, unless the contrary is explicitly said. In all our
calculations, the lattice parameters defining our supercell
are relaxed to their equilibrium values, so that the struc-
tural properties are computed at external zero pressure.
The residual atomic forces at the end of the optimization
runs never exceed 50 meV/Å.

3 Results and discussion

3.1 Atomic structure

In hexagonal β Si3N4 there are two inequivalent nitro-
gens, denoted as NI and NII, which form a quasi–planar
Si3N configuration, almost parallel to the basal plane. The
deviations from perfect planarity (which occurs when N
and its three Si neighbors are on the same plane) can be
estimated through the angle formed by the vector par-
allel to one of the Si–N bonds with the plane contain-
ing the other two, which does not exceed 5◦. Our cal-
culated Si–N bondlengths in β Si3N4 (dSi−NII = 1.72 Å
and dSi−NI = 1.735 Å) well compare to the experimen-
tal values (dSi−NII = 1.730 Å, dSi−NI = 1.704, 1.728 and
1.767 Å) [29].

We study different configurations of CSi:β Si3N4,
where carbon substitutes silicon in the network, as a func-
tion of both the average concentration n(CSi) (defined as
the ratio of the CSi atoms to the number of Si sites in the
pure crystal) and the defect distribution. All the calcula-
tions are performed at zero external pressure, by letting
the lattice parameters relax to their equilibrium values,
since the lack of the optimization of the lattice parame-
ters may bias the final values of the relaxed atomic posi-
tions. The reduction of the cell volume ranges from 1.5%
at the lowest CSi concentration (n(CSi) = 1

36 ), to ' 2.5%
at n(CSi) = 1

18 .
At n(CSi) = 1

36 , C–N bondlengths are dilated (dC−N

ranges from 1.50 Å to 1.56 Å), with respect to β C3N4

(1.47 Å)[2]. This is mainly due to the geometrical con-
straints of the host crystal and results into a weakening
of the C–N bond. The stress caused by the presence of
CSi extends over neighboring sites, as shown by the fact
that the bondlengths between Si atoms and the nitrogens
bound to carbon range from 1.74 Å to 1.78 Å. The de-
viations of the Si-N bondlengths from their equilibrium
values in β Si3N4 appears to be slowly decreasing func-
tions of the (Si, N) distance from the defect.

In principle, for supercells containing more than one
CSi, one has to consider distinct configurations, because
of the inequivalence of nitrogen sites in β Si3N4. In prac-
tice, however, the physical properties of the defective crys-
tal are by far more affected by the strong perturbation
caused by the presence of C rather than by the particu-
lar choice of the CSi site. Therefore, only two prototypical
configurations having two CSi per unit cell (n(CSi) = 1

18 )
are studied and compared. In the first one (1/18; A), the
two carbons are bound to the same nitrogen, while in the
second one (1/18; B) the two impurities are fourth neigh-
bors (see Fig. 1). In order to distinguish among nitrogen
sites having a different chemical environment, we denote
with N(j) the nitrogens j-fold coordinated with carbon.
As in the n(CSi) = 1

36 case, the C–N bonds turn out to
be stretched. They range from 1.50 Å to 1.57 Å for the
(1/18; B) configuration, and from 1.49 Å to 1.63 Å in the
case of second neighbor carbons. While the (1/18; B) con-
figuration show analogies with that at n(CSi) = 1

36 , a non
trivial relaxation of the C-N bonds occurs in the (1/18;
A) configuration. In particular, the C-N(2) bondlengths
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Fig. 1. Atomic structures of CSi:βSi3N4, for the (1/18;A) (top)
and (1/18;B) configurations (bottom). Si atoms are dark grey,
C atoms grey and N atoms light grey. Only the atoms around
the CSi are drawn. One can note the distortion of the hexagonal
cycles containing the CSi defect.

are greater than those for C-N(1). This is consistent with
the larger stress affecting the N(2) atom, which is bound
to two carbons, with respect to N(1) sites. As a result of
the greater bond stretching, the (1/18; A) configuration
is about 0.1 eV higher in energy than the (1/18; B) one.
This picture also suggests an effective mechanism which
might favor scattered distributions of CSi in β Si3N4, at
small CSi concentrations.

In our simulations of Si2CN4, we started from the
structure recently proposed by the analysis of X-ray
diffraction data [12]. There are 28 atoms per unit cell,
arranged in a structure with point group Aaba2. It can be
viewed as a sequence of layers of distorted SiN4 tetrahedra
linked through N-C-N carbodiimide groups (see Fig. 2).
There are no C-Si bonds. The presence of carbodiimide
groups distinguishes Si2CN4 from other hypothetical com-
pounds with the same stoichiometry, which may be ob-
tained by replacing Si with C in silicon nitride.

The computed equilibrium lattice parameters of or-
thorhombic Si2CN4 well agree with experimental mea-
surements (see Tab. 3). Si–N bonds for N within the Si–N
rings give rise to a narrow distribution. Their bondlengths
range from 1.71 Å to 1.72 Å, and are very similar to

X

Y

Z

Fig. 2. Atomic structure of Si2CN4. The x, y and z directions,
parallel to the axes a, b, c of the orthorhombic cell, respectively,
are drawn. Si atoms are dark grey, C atoms grey and N atoms
light grey.

Table 3. Calculated and experimental lattice parameters a, b,
c, volume V and bulk modulus B of Aaba2 Si2CN4.

a (Å) b (Å) c (Å) V (Å3) B(GPa)

Theory 5.51 13.75 4.83 365.93 110

Exp. (Ref. [12]) 5.44 13.58 4.81 355.34

those found in β Si3N4. The bondlength between Si and
the apical N (bound to C) is smaller (1.68 Å). Interest-
ingly, also our calculated bondlength between carbon and
nitrogen in Si2CN4 (1.21 Å) is smaller than the C=N
double bondlength in other organic crystals [23]. A re-
cent DFT calculation on (NH2)3Si-N=C=N-Si(NH2)3 [13]
found 1.216 Å for the C=N bondlength, in close agreement
with the present study. All these values are consistent with
the remarkable strength of carbodiimide groups, and with
the reinforced bonds between the latters and the Si–N dis-
torted planes.

The shortest Si–N rings in Si2CN4 are sixfold and the
deviation of Si3N groups from perfect planarity is slightly
more pronounced than in β Si3N4. The mean angle be-
tween a Si–N bond and the plane containing the two others
bonds is equal to about 7◦. Nevertheless, the bond angles
in the two crystals are remarkably similar: in Si2CN4 we
find that the distribution of θN−Si−N is centered around
110◦, and θSi−N−Si around 119◦. The angle θSi−N−C
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on the apical nitrogen is equal to 167◦, and the carbodi-
imide group is almost linear (θN−C−N = 176◦). These
results are in good agreement with those quoted in ref-
erence [13] for other molecules containing carbodiimide
groups, apart from the small value (4◦) of the dihedral
angle between the (Si-N=C) and (C=N-Si) planes, which
contrasts with its value found in those molecules (' 90◦).

The presence of carbodiimide groups deeply affects
the elastic properties. On one hand, the bulk modulus of
Si2CN4 (110 GPa) is strongly reduced with respect to pure
and C–defective β Si3N4. On the other hand, the marked
anisotropy of the former is shown by the large differences
found among the elastic constants (Tab. 4), which can vary
by a factor 10, depending on the direction of the virtual
deformation (either parallel or normal to the carbodiimide
groups). A more detailed discussion of the calculation of
the bulk modulus from the computed elastic constants is
given in the Appendix.

Table 4. Computed elastic constants (GPa) of Aaba2 Si2CN4.
The error bar is 10 GPa.

c11 c22 c33 c12 c13 c23

210 440 180 60 25 140

3.2 Electronic structure

The bonding properties in Si2CN4 and in CSi:β Si3N4

can be better analyzed by looking at the valence elec-
tronic charge density along both the Si-N and the C-N
bonds, showed in Figure 3 for the case of pure β Si3N4

and β C3N4, computed at the equilibrium lattice parame-
ters. The Si-N bond shows a marked ionic character, while
along the C-N bond one can see an enhancement of the
electronic density, consistent with a dominant covalent
contribution. Our density profiles well agree with those
previously calculated by Liu and Cohen [2]. We also note
that no remarkable differences exist between the density
profiles corresponding either to Si-NI or to Si-NII type of
bonds, coherently with the fact that the Si-NI and Si-NII

bondlengths are very similar (1.735 Å and 1.72 Å respec-
tively). The same argument applies to C-NI and C-NII,
too. In all these bonds the nitrogen shows a nearly sp2-
like hybridization with a variable degree of ionicity.

In Si2CN4, at variance, the valence charge density pro-
file corresponding to the bond between the apical N and Si
shows a slight accumulation of charge in the bond region
on the nitrogen side, which results into a slightly more
ionic Si-N bond compared to the Si-N bond within the
sixfold rings. Consistently with the reduced coordination
number, the bondlength between Si and the apical N is re-
duced (1.68 Å instead of 1.72 Å) and the cohesion between
the Si-N rings and the carbodiimide groups is reinforced.

As discussed in the previous section, C-N bonds in CSi:
β Si3N4 are longer than in β C3N4, and indeed weakened.
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Fig. 3. Valence electronic charge density along the Si-N bond
in β Si3N4 (full line) and the C-N bond in β C3N4 (dashed
line). Reduced distances are used, so that the Si (C) atom is
placed at 0 and the nitrogen atom at 1. The density profiles are
in units of the average electronic density for the corresponding
crystal.
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Fig. 4. Valence electronic charge density along the C-N bond
in CSi: β Si3N4 (dashed line) and the C-N bond in dilated β
C3N4 (full line). The C-N bondlenghts are the same in the
two cases, and the atomic sites are indicated by arrows. For
the sake of clarity, also the difference between the two density
profiles is plotted.

The first reason of such a dilatation lies in the geomet-
rical constraints to which a carbon atom is subjected in
the host Si3N4 lattice. It is also interesting to compare
the charge density profiles along the C-N bond in CSi: β
Si3N4 and in β C3N4, to investigate possible changes in
the electronic distribution. In order to point out the role of
the host lattice in C defective silicon nitride, we compare
in Figure 4 the density distribution along a C–N bond in
CSi: β Si3N4 with that of a isometric C–N bond in an
hypothetically dilated C3N4. The main difference is seen
around the nitrogen site: in pure C3N4 (both at the theo-
retical lattice parameter and dilated) the maximum occurs
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Fig. 5. Electronic density of states (DOS) of β Si3N4 (top
panel) and Si2CN4 (bottom panel). The DOS are normalized
so that their two integrals are the same. The arrow indicates
the energy position of the deep CSi state in CSi: β Si3N4 at
n(CSi) = 1

36 .

on the bonding side, at variance with the electronic distri-
bution in CSi: β Si3N4. To recover the latter from that of
dilated C3N4, one has to consider a polarization compo-
nent on nitrogen, due to the neighboring Si cations, which
decreases the C–N σ bonding contribution slightly.

The electronic density of valence states (DOS) of
Si2CN4 is drawn in Figure 5, in comparison with that
of β Si3N4. The DOS have been calculated for the two
crystals by using the special points in the Brillouin zones,
and then adding a ' 0.5 eV Gaussian broadening. A in-
ner gap of ' 4 eV between two complex structures (the
first one is comprised between −18 and −14 eV below
the bottom of the valence band, the second one starts at
−10 eV) is found. Three kinds of states contribute to the
first structure: σ combinations with strong bonding char-
acter in carbodiimide groups (either spN sC spN at low en-
ergies, or spN pC spN) and s orbitals of nitrogens in the
SiN layers.

The second structure is rather complex, since it comes
from bonding hybrids between N and C, on one side, and N
and Si, on the other side, plus non-bonding nitrogen states
at high energies. As far as the states mainly localized
on the carbodiimide groups are concerned, in the range
(−10 eV,−6 eV) we find σ molecular orbitals built from sp
hybrids of nitrogens with evident bonding character with
respect to the apical silicons, and only weak bonding char-
acter with carbon. At higher energies (' −5 eV), we find
π molecular orbitals on the carbodiimides. In this broad
energy range (−10 eV, −3 eV), there are other relevant
contributions, coming from p nitrogen states hybridized
with Si, contributing to the Si-N bonds in the SiN layers.
The upper part of the valence band, corresponding to the
rightmost peak in Figure 5, comes essentially from non
bonding pN states.

The minimal gap between the valence and the con-
duction bands of Si2CN4 is found at the Γ point of the
Brillouin zone. Its value, computed as the difference be-
tween the LDA eigenvalues, is equal to 4.3 eV. As it is
generally underestimated [32], this value should rather be
considered as a lower bound for one–particle excitations.
It is therefore fully consistent with the experimental fact
that pure Si2CN4 is found to be colorless [12]. The direct

gaps computed at other points of the Brillouin zone can
be up to 20% larger, as a consequence of the moderate dis-
persion. At the Γ point, the highest (lowest) state in the
valence (conduction) band, that is, the HOMO (LUMO),
is a π combination of non bonding (antibonding) N=C=N
orbitals. States with non bonding (antibonding) character
localized at the SiN layers appear at slightly lower (higher)
energies with respect to the HOMO (LUMO). The charac-
ters of the HOMO and LUMO can be understood on the
basis of a simple tight-binding model for a linear carbodi-
imide group whose dangling bonds are saturated by hy-
drogen. This comparison makes sense, since in Si2CN4 the
carbodiimide group is almost linear and the dihedral an-
gle between the Si-N=C and C=N-Si planes is very small
(see Sect. 3.1).

3.3 Energetics

It would be of interest to know whether crystalline
Si2CN4 is a thermodynamically stable phase or simply a
metastable configuration in the ternary Si–C–N diagram.
In the following we calculate the enthalpies of a few re-
actions, for which both crystalline Si2CN4 and defective
CSi:Si3N4 decompose into a mixture of simpler binary and
elemental compounds. Among a variety of reactions, we
choose the following two:

Si3−xCxN4 (c) ⇀↽ xSiC(c) +(1− 2
3
x)Si3N4 (c) +

4
3
xN2 (gas)

(1)

Si3−xCxN4 (c) ⇀↽ xC(c) + (1− 1
3
x)Si3N4 (c) +

2
3
xN2 (gas)

(2)
x = 1 corresponds to Aaba2 Si2CN4, and x =1/12 and
1/6 correspond to the two defect concentrations in CSi:β
Si3N4 (n(CSi) = 1

36 and 1
18 respectively). The crystalline

phases denoted with (c) are: Aaba2 for Si2CN4; β for pure
and C–defective Si3N4; T 2

d for SiC; diamond for C.
Reaction (1) is relevant, since the experiments

show that the decomposition of several Si–C–N com-
pounds, both in crystalline, nanocrystalline and amor-
phous phases, results in silicon carbide and silicon nitride,
plus molecular nitrogen [8,12]. On the other hand, a reac-
tion path analogous to that depicted in reaction (2), has
been recently obtained for C poor Si–C–N nanopowders,
which release carbon and approach the Si3N4 stochiome-
try as a function of the increasing temperature [11]. More-
over, the final products of reaction (2) are more stable
than those considered in reaction (1) at normal condi-
tions, according to experimental data [23,31]. Therefore,
the two reactions written above are guidelines to a first
understanding of the energetics of ternary Si–C–N com-
pounds.

By means of our DFT calculations, we focus on the
effect of the inclusion of carbon on the stability of the re-
actants (Aaba2 Si2CN4 or CSi:Si3N4). In order to discuss
this issue, we collect in Table 5 the computed enthalpies
per C atom (∆rH/x) of the reactions (1) and (2). One
can see that Aaba2 Si2CN4 is stable against its decom-
position into SiC, Si3N4 and N2, which is the reaction
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Table 5. Enthalpies of reaction normalized to x for the disso-
ciation of Si3−xCxN4 either in xSiC + (1 − 2x

3
)Si3N4 + 4x

3
N2

(reaction (1)) or in xC + (1− x
3 )Si3N4 + 2x

3 N2 (reaction (2)).
Both Aaba2 Si2CN4 (x = 1) and the defective CSi:β Si3N4

configurations at different C concentrations (1/36 or 1/18) are
considered as reactants (see Sect. 3.1 and Fig. 1). ∆rH is calcu-
lated at zero external pressure and absolute temperature. Zero–
point effects are not included. In the third and fourth columns
the calculated enthalpies are shown, and a lower bound (re-
action (1), second column) and an upper bound (reaction (2),
fifth column) for the enthalpies of the reactions are also given.
See text for discussion.

reaction (1) reaction (2)

∆rH /x (kJ/mol) l.b. calc. calc. u.b.

Si2CN4 +215 +285 −10 +20

CSi Si3N4 (1/36) +65 +135 −160 −130

CSi Si3N4 (1/18; A) +50 +120 −175 −145

CSi Si3N4 (1/18; B) +60 +130 −165 −135

observed experimentally at T ' 1500 ◦C, and more stable
than CSi:Si3N4 in both reactions. From the enthalpies of
reaction of C–defective silicon nitride, the scattered defect
distribution (B) at n(CSi) = 1

18 turns out to be slightly
favored.

A question naturally arises, about the reliability of the
computed enthalpies of reaction. In our calculations, we
have two major sources of error, coming from the use of
pseudopotentials and of the LDA. The LDA is known to
give systematically too large binding energies (see Tab. 1,
2 and Ref. [18]), so that at first sight our results may be
questionable. Nevertheless, when calculating energy dif-
ferences, some of this error may be eliminated. This com-
pensation is especially effective when reactions in which
the nature of bonding does not vary too much are con-
sidered. For instance, the computed enthalpy of reaction
Si + C → SiC (−60 kJ/mol) agrees very well with the
experimental value of −62 kJ/mol, which can be easily
calculated from Table 2. It is therefore worth estimating
upper and lower bounds for the computed enthalpies of
reactions (1, 2).

Thus, we introduce the quantity∆D(A−B), defined as
the difference between our computed Dth(A−B) and the
experimental Dexp(A−B) A-B bondstrengths in a given
compound. Let’s consider, for instance, the reaction (1)
for CSi:β Si3N4, where 4 Si-C + 4/3 N≡N bonds are cre-
ated, and 4 C-N + 4 Si-N bonds destroyed. The difference
between the computed and the experimental enthalpy of
reaction per C atom (i.e. our error∆E) can thus be rewrit-
ten as

∆E = 4∆D(C−N) + 4∆D(Si−N)

−4∆D(Si−C)− 4
3
∆D(N≡N).

Since experimental determinations of the C-N bond-
strength (Dexp(C-N)= 298 kJ/mol [23]) are available
only for organic molecules, we approximate ∆D(C−N) '
[Dth(C .=N)/Dexp(C .=N) − 1]Dexp(C−N), where the

first term in brackets is the ratio between the computed
and experimental dissociation energies of the CN radical
(see Tab. 1). The estimate of ∆D(C-N) is expected to be
reliable, since the LDA yields a relative overbinding which
is roughly constant for various bonds. By using the numer-
ical values in Tables 1 and 2, we see that our calculation
overestimates the stability of the reactants in reaction (1)
by about 70 kJ/mol. This value is used in Table 5 to give
a lower bound for the stability of the reactants. By tak-
ing into account the occurrence of stretched Si-N and C-N
bonds in CSi:Si3N4, one would get a slightly smaller error
∆E.

The case of reaction (2) is unlike. By proceeding as
above, the difference between the computed and the ex-
perimental enthalpies for this reaction amounts to about
−30 kJ/mol, which means that the stability of products
is overestimated by our calculation. An upper bound can
thus be given for ∆rH in reaction (2).

Our results suggest that at zero pressure and temper-
ature Si2CN4 is stable against decomposition into silicon
carbide and silicon nitride. On the other hand, when T in-
creases, the entropic contribution to the Gibbs free energy
G = H + TS, may stabilise the products of reaction (1).
An estimate of T ∆rS between the products of the two
reactions can be made by taking into account only the en-
tropy of 2/3 mol of N2 in the gas phase, which gives, at
T ' 1500 ◦C, T ∆rS of the same order of ∆rH. These con-
siderations might explain the observed recrystallization of
ternary Si–C–N compounds in SiC and Si3N4, plus molec-
ular nitrogen, at T ' 1500 ◦C [8,11,12], although the en-
thalpy difference between the products of reactions (1) and
(2) is larger than 200 kJ/mol, favoring the occurrence of
reaction (2) at low temperatures.

The entropic contribution should likely favor the con-
tinuous loss of nitrogen, above a temperature which
roughly corresponds to 1000 ◦C according to the experi-
mental data. The resulting amorphous compound, whose
Si/N ratio is larger than 2, might be thermodynamically
less stable than the crystalline phases of silicon carbide
plus silicon nitride. A further temperature increase could
thus be sufficient to induce the irreversible transformation
into polycrystalline SiC/Si3N4.

CSi:β Si3N4 turns out to be much less stable than
Si2CN4. By looking at the reaction Si3−xCxN4 →
x
3 C3N4 + (1− x

3 )Si3N4, one can note that both the num-
ber and the type of bonds stay constant when considering
C defective silicon nitride as reactant. For this reaction,
∆rH/x is ' −160 kJ/mol, consistently with Si-N and C-N
bonds more stretched, and indeed weaker, in CSi:β Si3N4

than in the separated binary compounds. This also sug-
gests that other ternary compounds obtained through re-
placement of Si or N with C atoms in crystalline silicon
nitride might be thermodynamically not very stable.

4 Conclusions

Our density functional calculations show that the recently
synthesized Si2CN4 is stable, at zero pressure and tem-
perature, with respect to the decomposition into silicon
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B0 =
(c11c22c33 + 2c12c13c23 − c11c

2
23 − c22c

2
13 − c33c

2
12)

(c11c22 + c11c33 + c22c33 +−2c11c23 − 2c22c13 − 2c33c12 + 2c12c13 + 2c13c23 + 2c12c23 − c212 − c213 − c223)
· (A.2)

carbide, silicon nitride and molecular nitrogen. A reaction
enthalpy close to zero is obtained when considering dia-
mond, nitrogen and silicon nitride as products, but the
experimental relevance of this reaction is uncertain, since
the dissociation of Si2CN4 into binary or elemental com-
pound generally follows the other path. Moreover, because
of the presence of carbodiimide groups, which are tightly
bound to the SiN distorted layers in Si2CN4, the activation
barrier to be overpassed would possibly be rather large.
Si2CN4 is a wide gap compound, like β Si3N4, but much
softer than the latter, as shown by the computed elastic
constants.

On the other hand, CSi:β Si3N4 turns out to be less
stable. The inclusion of carbon in the silicon nitride net-
work causes a long range microscopic stress. As a result,
many bonds are stretched and the cohesive energy is low-
ered. Our calculations suggest also that, at low CSi con-
centrations, clustered distributions of defects would not
be energetically favored.
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Note added in proof

In a recent paper (Phys. Rev. B 60, 3126 (1999)) Kroll,
Riedel and Hoffman studied the ternary SiC2N4 and
Si2CN4 compounds theoretically. Their results for the lat-
ter well compare to ours, apart from a slight underestimate
of ∆rH for Aba2 Si2CN4 in reactions (1) and (2).

At variance with the present work, Kroll and cowork-
ers evaluated ∆rH by using different approximations of
the exchange-correlation functional for the extended and
the molecular phases. This might be the reason of the dis-
crepancies with our results.

Appendix: Calculation of bulk modulus

As a general rule, an external hydrostatic pressure induces
an anisotropic volume relaxation in non cubic crystals. In
this appendix, we give the expression for the bulk modulus
B0 as a function of the elastic constants cij of orthorhom-
bic crystals, by taking into account the anisotropic volume
relaxations.

The elastic energy U , expressed as a function of the
cell deformations, is minimized subject to the condition
that V be held constant by using a Lagrange multiplier.

Thus, the analytical expression of the elastic energy as a
function of the volume variations (V − V0) is obtained:

U = U0 +B0
(V − V0)2

2V0
+ o (V − V0)3, (A.1)

where the bulk modulus at equilibrium (B0) is given by:

see equation (A.2) above.

The quantities with the 0 subscript are equilibrium val-
ues. By keeping the equilibrium cell shape constant as a
function of the applied pressure, one would obtain another
expression, say B̃0, for the bulk modulus:

B̃0 =
c11 + c22 + c33 + 2c12 + 2c13 + 2c23

9
· (A.3)

Whenever B̃0 is computed at the minimum (a0, b0, c0), it
cannot be smaller than B0; their difference is slight when-
ever c11 ' c22 ' c33 and c12 ' c23 ' c13, but it may
be appreciable for very anisotropic crystals. For instance,
in Si2CN4 we find B0=110 GPa and B̃0=140 GPa (see
Tab. 4). We note that the use of the elastic energy as writ-
ten in equation (A.1) implies that the internal degrees of
freedom (i.e. the atomic positions) are optimized whatever
the cell deformation.
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